It's a common question—how do you unlock your analytics potential? Should you build your own tools in-house, or invest in buying from a vendor? We analyze both options.
One of the most talked about topics with all of my customers is whether they should build an analytics application with an in-house team of data scientists working on open source technology, or whether they should buy a product which serves their purpose of creating a foundation or even better provide their industry specific solution for faster go-to-market. The clear bent is towards the build side as the general feeling is that they would have more control and hence a better chance of success.
To see which tactic makes more sense, let’s study the pros and cons of building an analytics application from ground up:
However, as rosy as it may sound, the build strategy is more often than not, marred by massive project delays, poor execution and very minimal output based on the amount of time spent.
The reason is simple. Analytics is still in its evolution phase. There is not one correct answer to the problem and there is definitely a dearth of talent which is causing more harm than good to organizations.
Build works best when you have the ability to spend tremendous amounts of man-hours in research and have the patience to wait for the right solution. Companies that have been largely successful in building in-house analytics solutions and capabilities are Google, Uber, Amazon, Facebook (you get the point here). Companies that are way ahead of the curve. Companies that rely on data analysis for their daily bread. It's core to their business and their existence.
Now lets’ look at the Buy option. Buying a product or solution has its own set of pros and cons.
Skeptics may argue that products are not flexible enough for easy implementation and it can be hard to integrate with other applications. Thank god for Google, which created APIs that have made it very easy for products to talk to each other and ensure that there is no friction. The other very big advantage with buy is that the investment lock-in can be minimal till the time value is not derived. You are not wasting time trying to decide the best technology stack but are more focused on ensuring success of applicability.
Moreover, due to the nascency of the technology companies and plethora of VC money in this space, proof of concepts are provided by almost every provider. However, for the buy strategy to work, it requires a very defined mindset and team configuration which I will take up in my subsequent blogs.
In summary, stick to your core business and take advantage of the research dollars put in by others. As technologists it's easy to get carried away with the excitement and buzzwords around analytics. But my suggestion would be: “Don’t Try this at Home”!
Abhishek is a data junkie who lives and breathes solving customer problems using analytics. He has a breadth of experience - from implementing large-scale enterprise data warehouses to helping manufacturers analyze asset behavior and predict failures. Due to his business background, he has a unique ability to understand functional requirements and translate them into technology solutions. He is part of the customer success team and leads solution engineering initiatives, traveling all over the world to explain how Progress DataRPM can help companies save millions of dollars.
Let our experts teach you how to use Sitefinity's best-in-class features to deliver compelling digital experiences.
Learn MoreSubscribe to get all the news, info and tutorials you need to build better business apps and sites