
©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Progress / Mobility

WHITEPAPER

Mobile Modernization:
Architect Playbook

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

2Progress / Mobility

Contents

Introduction��3

The Challenges of Migrating to a Modern Mobile Architecture��������������������������������������� 4

	 1. Assess your structure���5

	 2. Assess your skills�� 6

Strategies for Migrating to Mobile��7

	 Mobile Application Approaches ���7

	 Mobile Application Architecture�� 9

	 The Bottom Line ��11

Strategies for Migrating to the Cloud���11

	 Data Architecture ��12

	 Addressing Your “Monolith”��12

	 API Design���13

	 Service Modularization & Granularity��15

Data & Mobile Applications��� 16

	 Security���17

	 App and API Authentication and Authorization ���17

	 Data Encryption �� 18

	 Compliance��� 19

	 Choosing the Right Cloud�� 19

Future-Proofing Your Modernization Efforts ���21

	 Performance Considerations ���21

	 Monitoring & Management Considerations��� 22

	 Design with the Future in Mind��� 23

Next Steps�� 24

Progress Reference Architecture�� 25

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

3Progress / Mobility

Introduction
As a technical architect, you play a critical role in stewarding the legacy systems that
power the core of your business. Keeping these systems running well is essential to your
organization’s present, and future.

As a forward-thinking technologist, you also know that there are a number of trends in
business and technology worth paying attention to. Mobility, cloud computing, and even
emerging areas like Chatbots, AR/VR and the like have the potential to open up new
paths to customers, and unlock new innovations within your organization.

Your challenge--one that you are uniquely suited to tackle--is how to keep your
legacy systems stable, while moving your technology stack into the future, starting with
mobile and the cloud. The purpose of this playbook is to provide you with concrete,
actionable guidance that you can use when planning a mobile modernization effort.

We’ll start this guide with a brief discussion about the challenges unique to mobile
modernization, and tips for assessing your organizational design when considering
mobility. Then, we’ll follow-up with strategies for migrating to mobile, migrating to the
cloud and approaches for future-proofing your efforts so that you can better embrace
emerging trends when the time is right. By the end of this playbook, you’ll be fully
equipped with tips, strategies, visuals and checklists you can use to plan, discuss and
execute a mobile modernization effort for your organization.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

4Progress / Mobility

The Challenges of Migrating to
a Modern Mobile Architecture
Modern mobile applications are becoming the preferred window through which your
employees and consumers interact with enterprise data. Whether email, calendars, and
chat, or accessing CRM, ERP or financial data, your organization has likely already “gone
mobile” as employees put their work in their pockets. While mobility projects may have
existed on the POC fringe in your organization just a few years ago, their prevalence,
and your customers’ and employees’ appetite for them means that these apps must be
architected with the same care we’ve taken for traditional systems in the past.

What’s more, because modern workforces are increasingly physically mobile--the walls of
an office and a modern workday no longer constrain a desire or need to work--there’s a
need not just to create mobile interfaces, but mobilize access to essential data. Modern
mobile apps need to connect to your monolithic or legacy systems in order to be useful.
But it can be challenging to mobilize the data in those monoliths, not to mention move
them, in entirety, to the cloud.

Finally, while mobile applications and cloud migration efforts share many common
threads with traditional enterprise systems, both introduce unique performance, scale
and security challenges that you need to be prepared for.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

5Progress / Mobility

These challenges, collectively, can be daunting, but need not be overwhelming.

By combining traditional architecture with a few modern practices, you can easily tackle
those challenges, enabling you to modernize your systems and unlock new opportunities
for your organization.

Before you begin, consider the architecture
of your organization
First and foremost though, you should assess your organizational architecture. When
undertaking a mobile modernization effort, it can be tempting to jump right into system
design. But we recommend making sure you understand how the structure of your
organization and skills of your teams will impact and influence your modernization
efforts. By taking a few moments to consider your current state using the checklists
below, you’ll be better prepared to make key technology decisions down the road.

1. Assess your structure

First, you’ll want to pay close attention to how the makeup of your organization impacts
your modernization efforts. The following are some key questions to ask, and advice for
fitting your modernization effort into your organizational context.

Mobility team makeup We are forming a new mobile
team and either retraining
existing staff or hiring mobile
developers.

We are asking existing front-end
teams to take on upcoming mobile
projects.

Data & backend teams We are forming a new API
team that will work alongside
our existing data & backend
teams.

We are asking our existing data
and backend teams to build a
new API, while maintaining legacy
interfaces

API roadmap We are building a new API that
wraps our legacy sources for
use by modern applications.

Our new API will completely
replace legacy interfaces from day
one, affecting all applications, old
and new.

Table 1. Personnel considerations for mobility modernization

It’s important to note that modernization doesn’t need to be an all-or-nothing approach,
for your mobile apps, or your backend. Whether creating APIs and a microservices

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

6Progress / Mobility

architecture or adding mobile projects to your existing slate of apps, we recommend
taking a piecemeal approach that favors keeping your core running and stable, while
building out new capabilities and services that wrap the core, without disruption.

Wherever possible, its best to favor adding new services and apps alongside what you
have in place, as opposed to wholesale replacement.

Fig 1. Moving monoliths to the cloud does not have to be “all or nothing.” Layering BaaS on top of existing
legacy systems, and using secure pipes to access existing on prem data, minimizes potential disruption
when taking the first step towards the cloud.

2. Assess your skills

Next, evaluate the skills of the teams that will be responsible for the
development and management of key pieces of your mobilization
effort, from the mobile apps themselves to cloud services, and
APIs. In the realms of both mobile and data, consider the following
questions before you begin your effort.

Regardless of how you answer the questions below, if there is some
close overlap of skills across teams, we suggest unifying skill sets
across the development stack for front-end, back-end and even
mobile work. While there are several options, we believe unifying
around JavaScript is an ideal choice. Both because of presence of
well-supported, stable JavaScript runtimes and libraries across the
stack, and the size of the JavaScript community, which presents a
solid talent pool from which to grow your development teams, over
time.

Key Considerations

•	 Make sure you’re aware of how
the structure of your organization,
especially with mobile, data and
backend teams might affect your
modernization efforts.

•	 Take a piecemeal approach
to modernization that favors
keeping your core running and
stable, while building out new
services that wrap the core.

•	 It’s best to favor adding new
services and apps alongside what
you have in place, as opposed to
wholesale replacement.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

7Progress / Mobility

Mobile Teams Our mobile teams will be/are
staffed by front- and back-
end developers who are most
comfortable with JavaScript.

Our mobile teams will be/are
staffed by developers experienced
with native mobile technologies.

Data/Services Teams Our Data teams will be/are
staffed by developers who are
comfortable with Node.js.

Our Data teams will be/are
staffed be developers who
are comfortable with legacy
frameworks, such as C#/.NET or
Java.

Table 2. Skill considerations for mobility modernization

Strategies for Migrating to
Mobile
Any mobile modernization effort will consist of two discrete chunks of effort, the mobile
apps and associated systems, and mobilizing data through cloud-based APIs and
services. In this section, we’ll discuss strategies for your mobile app migration, first via
the types of apps available to you, and then architectural considerations for the apps
themselves.

Mobile Application Approaches
The first architectural decision you need to make for a modernization effort, whether
you’re creating a single mobile app or several, is the development approach you want to
take. In particular, there are four major approaches you’ll want to consider:

•	 Native Mobile App: An app purpose-built for mobile operating systems, using
native languages, tools, and distributed as a native, installable package. Has full
access to native device APIs and features.

•	 Cross-platform Native Mobile App: A native mobile app built from a single
cross-platform codebase. Has full access to native device APIs and features,
while leveraging cross-platform languages (i.e. JavaScript) and tools to support
the creation of a single app.

•	 Hybrid Mobile App: A mobile app built with web technologies, hosted in a
native app shell. Hybrid technologies (Cordova, PhoneGap, Ionic) embed full-
screen browsers and use plugins to access native device APIs.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

8Progress / Mobility

•	 Mobile Web App: A responsive web app tailored to mobile
browsers (Safari, Chrome, Firefox). Can leverage native
features of these browsers (Geolocation, Local Storage,
etc.), but do not have access to native device APIs and
features.

•	 Progressive Web App (PWA): PWAs are mobile web apps
that leverage emerging mobile web standards to look, feel
and behave more like native apps. They are an evolution
of traditional hybrid and mobile web apps. Currently, PWAs
have more support in the Android ecosystem, but coming
improvements to Safari on iOS make this an option worth
monitoring and evaluating in 2018.

Each choice has pros and cons, and you should make your
selection based on your organizational context (like skills), as
well as the needs of your app or apps. And while you may wish
to standardize on one approach for most or all of your apps, you
should also consider allowing one-off cases where the needs of the
app are uniquely suited to a non-standard approach.

The table below summarizes some key factors to consider when
choosing an approach based on your organizational context and the needs of your app.

Factor Approaches to consider

I need access to native device features and APIs not
available in mobile browsers

Native, Cross-Platform Native, Hybrid

Our app needs to function as a desktop web app and
a mobile web app from the same deployed location

Mobile Web, PWA

I need to be able to quickly deploy updates to my
apps without relying on a 3rd party approval process

Mobile Web, PWA, Cross-Platform Native†,
Hybrid

Our app is targeting a single mobile OS Native, Cross-Platform Native, Hybrid

I need to standardize on an approach that matches
the existing JavaScript skills of my web or backend
teams

Cross-Platform Native, Hybrid, Mobile Web,
PWA

I need 60fps performance across devices Native, Cross-Platform Native

I need reliable offline and local device storage Native, Cross-Platform Native, Hybrid

NativeScript
NativeScript is an open source
framework from Progress for
creating cross-platform native mobile
applications with JavaScript.

This is not hybrid.

NativeScript produces truly native apps,
complete with native performance, while
enabling complete code reuse across
iOS and Android. It does this while still
integrating deeply with the technologies
and concepts web developers already
know: JavaScript/TypeScript, CSS,
Angular, Vue, NPM and WebPack.

When used with Angular, a significant
portion of an app’s code can even be
shared between the native mobile
clients and the web.

Learn more at nativescript.org

http://nativescript.org

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

9Progress / Mobility

Factor Approaches to consider

I need to be able to encrypt and decrypt local data on
the device

Native, Cross-Platform Native, Hybrid

I need maximum access to device APIs and the best
app performance

Native, Cross-Platform Native

Table 3. Mobile Application Factors

† Only true if you chose a cross-platform framework that supports these types of updates.
NativeScript, for example, supports this kind of hot patching.

Mobile Application Architecture
Once you’ve determined your mobile app approach, you’ll want
to spend some time planning the architecture of the apps. Like
traditional enterprise apps, this includes things like source control,
branching procedures, coding standards, and other factors. While
these are in your purview as an architect, they are out of scope for
this article.

That said, mobile apps are architecturally unique in many ways,
and introduce new considerations that fall within the application
architecture heading, and which you’ll want to consider. Table 4
below summarizes many of these, as well as options for native
mobile and cross-platform or web projects:

Category Native
Cross-Platform
Native

Mobile Web, PWA

Application
patterns and
practices

MVC, MVP, MVVM.
Largely driven by the
patterns of vendor
development stacks

MVVM, often referred to as MV*. Largely driven by
best-practices in the broader web community and
popular JavaScript frameworks, like Angular, Vue
and React.

Device Application
Runtime

Native Native w/ cross-
platform interop (i.e.
NativeScript)

Mobile Browser

UI Frameworks UIKit (iOS), Material
(Android)

Access to native UI
frameworks via cross-
platform interop.

Kendo UI, Bootstrap,
Foundation, etc.

Note on hybrid

While hybrid has been a popular
option for building cross-platform
mobile apps, as an approach, it is
rapidly fading. With the rise of PWAs
and native cross-platform frameworks,
there are simply better options for
cross-platform mobile apps today.
New projects should generally avoid
hybrid.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

10Progress / Mobility

Category Native
Cross-Platform
Native

Mobile Web, PWA

Application
Frameworks

iOS, Android Angular, Vue, React
(via JavaScript)

Polymer, Ionic (PWA)

Code-Sharing
Approaches

N/A; Not possible at
the native code (UI,
business logic, etc)
level

Business logic,
networking and
state management
code can be shared
between native
mobile and web apps;
some frameworks
support UI code
sharing

Business logic,
networking, state
management and UI
components can be
shared between web
apps/PWAs

Deployment &
Management

Public or Internal
Store Deployment

Public or Internal
Store Deployment;
Exception for
JavaScript-based
runtimes, which can
live update non-
native code without
full deployments

Server-based
deployments

Plugin & SDK
Management

Cocoapods (iOS) and/
or Gradle (Android)

npm, Cocoapods and/
or Gradle

N/A; Native plugins and
SDKs are not available
with these approaches;
Limited to browser APIs

Table 4. Mobile Application Architecture Considerations

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

11Progress / Mobility

The Bottom Line
Given the considerations above, unless outweighed by other, contextual factors, we
suggest a strategy that favors a mix of cross-platform native apps and PWAs,
depending on the specific needs of each app. Not only does cross-platform native
provide skills reuse that extends to web, cross-platform frameworks like NativeScript
make it easy to share code across mobile app platforms (iOS and Android) and with your
PWAs/web apps.

Once you’ve determined the approach for your app, and planned for your app
architecture, you can turn your attention to the other side of the modernization coin:
mobilizing the data your app needs.

Strategies for Migrating to the
Cloud
In the context of this playbook, we are using the term “migrating to the cloud” to
encompass strategies for making existing on premises data and assets accessible to
mobile apps, both in and beyond the office. This does not, however, mean that mobile
modernization requires a wholesale migration of your legacy data sources into public or
private clouds. Quite the opposite. In fact, it’s rare to find legacy systems that need to be
completely modernized. Instead, we believe that a successful cloud migration is one that
is piecemeal, value-based and Interface-driven.

•	 Piecemeal: Data and core functionality should be moved to the cloud in the
smallest units possible, as opposed to moving entire systems, databases, or even
services.

•	 Value-based: What moves to the cloud should be driven by the highest need
and value, as opposed to a sequential list or backlog.

•	 Interface-driven: In many cases, “migration” means leaving core data in place,
while using the cloud to expose targeted interfaces to that data via RESTful
APIs, Microservices and the like.

In this section, we’ll discuss some cloud migration strategies, first through how you
architect data services and systems, then through securing cloud data access.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

12Progress / Mobility

Data Architecture
When planning the data architecture for mobile modernization, you should start with a
clear picture of the role your monolith systems play in the effort, before determining how
to migrate, expose and extend these into the cloud.

Addressing Your “Monolith”

For mobile modernization, data architecture starts with identifying and putting a virtual
boundary around your “monolith.” This is the collection of databases and systems of
record that are essential to the apps you plan to mobilize. They could be custom-built
systems or off-the-shelf systems for things like CRM, ERP, etc. No matter the source of
the system, you should create an inventory of the systems that make up your monolith
and the core data and required for your mobilization effort.

As we’ve said already, we do not recommend a modernization effort predicated on the
wholesale migration of one or more monoliths to the cloud. Even if your intention is to
eventually replace a monolithic system with a modern one, this should be planned out
over time, using one or more of the approaches below.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

13Progress / Mobility

Fig 2. Successful cloud migration strategies start with an inventory. It is possible to move parts of a
monolith to the cloud and leave other parts unchanged while still gaining advantages the cloud has to
offer.

API Design

The first step is to provide access to monolithic data via a
modularized, RESTful API. Not only does this approach provide
an interface to your monolith that adheres to modern data access
standards and practices (as opposed to native-driver-centric
approaches of the past), but creating a RESTful API provides
a blank slate upon which to define a clear migration path for
enterprise data and core functionality.

One aspect of this approach that you’ll need to plan for is how
to facilitate the connection between the RESTful API and your
monolithic systems. There are a few approaches to choose from:

•	 BaaS + API Gateway: An approach that wraps your
monolithic sources and exposes data via mappings from
source data to targeted, mobile-friendly data sources. Often
facilitated by a BaaS or mBaaS product, such as Kinvey.
Caching for increased data access performance.

Kinvey
Kinvey is a complete serverless cloud
platform from Progress that powers
mission-critical apps. It provides
everything required to deliver a high-
performance, secure and compliant
backend for every mobile project.

Named a Leader in the Forrester
“Wave” for “Mobile Development
Platforms,” Kinvey specializes in helping
development teams get to market over
75% faster.

If you’re trying to mobilize legacy
systems or reuse existing auth
providers, start with Kinvey.

Kinvey can be run on any cloud, but
unlike AWS, Azure or Google Cloud,
which provide a “bag of parts” that
development teams must assemble and
maintain, Kinvey provides a seamless,
integrated platform focused on
compliance and productivity.

Learn more at progress.com/kinvey

http://progress.com/kinvey

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

14Progress / Mobility

•	 Store-And-Forward: An approach that insulates your monolith from direct
access, while providing mobile access to core data. Requires sophisticated sync
and conflict-resolution capabilities, especially in cases where mobile data is read-
write.

•	 Secure Data Pipeline: An approach that provides secure access to on-premises
data sources behind your firewall. One example is the Progress Hybrid Data
Pipeline (HDP), which provides self-hostable data connectivity.

Fig 3. Using a secure data pipeline to expose existing data to the cloud makes it easy to build scalable,
RESTful APIs for mobile clients without disrupting existing legacy apps, and avoids the pitfalls of
connecting mobile clients directly to legacy systems..

The goal, ultimately, is to create a reusable API layer that can power the mobile apps of
today and tomorrow, while minimizing potential disruptions to existing legacy apps. With
the right mix of these techniques, the traditonal risks of migrating to the cloud can be
significantly reduced.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

15Progress / Mobility

Service Modularization & Granularity

Once you’ve identified one or more data access approaches for your API, you’ll want
to consider how to define the surface of your API. When creating a secure API for
your effort, granularity is key. Because of the unique constraints of modern mobile
applications (networks, device data plans, etc) it’s rarely the case that your core data
and services will map one-to-one to what’s needed on mobile. Often, you’ll need to
decompose a single service into multiple services to ensure that mobile devices are only
pulling data needed for an app over a network. In many other cases, you may want to
combine multiple services into a single API endpoint that provides a mobile-friendly
payload. Very often, you’ll use both of these approaches, together.

Fig 4. Use microservices, serverless functions and aggregrate web services tactically. Rarely will a monolith
become “all serverless” or “all microservices.” Migrating slices of functionality to these new paradigms is
often the best balance between maximizing cloud performance and minimizing risk as you transition.

The table below highlights a few of the common service modularization approaches for
you to consider.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

16Progress / Mobility

Approach What it is

Service Aggregation & Orchestration Composing existing or related services into mobile-
friendly APIs. Meant to minimize network calls
and traffic in mobile apps by “normalizing” certain
types of data. One example could be an Order API
that pulls order and customer details from multiple
monolith sources and combines these into a single
payload.

Microservices Decomposition of services into small, targeted units.
May be shared, or specific to a single application or
use. Driven by the needs of the app or apps.

Serverless Event driven units of business logic or functionality
as shared cloud services. Examples could be a
unique email verification service or a CRM customer
lookup services. Meant to be highly scalable and
reduce operational costs compared to “always on”
cloud services.

Table 5. Approaches for managing service granularity

Data & Mobile Applications

Finally, when planning your data architecture, you’ll want to
consider a few data-related design choices that are particularly
unique to mobile.

•	 Offline Storage: Unlike the computers on our desktops,
mobile devices can and often do go without a consistent
network connection. A modern mobile application should
have a plan for offline storage, especially for use cases
where users will consistently find themselves without a
steady connection.

•	 Caching: As discussed above, many BaaS systems help
manage data access speed and mobile performance by
caching certain types of data. In addition, mobile apps may
choose to cache data on device for improved performance.

Making Offline Data Easy
For most real-world mobile apps, the
ability to work offline is critical. Yet so
many apps fail to provide this capability
because offline is hard.

It doesn’t have to be with Kinvey from
Progress.

Kinvey SDKs make it easy for
developers to quickly add robust offline
support to any mobile app, complete
with automatic data sync to ensure
offline changes are synchronized with
the cloud.

This even works when using Kinvey to
mobilize an existing database or legacy
system. In fact, Kinvey’s advanced
caching techniques can make apps
faster when interacting with slow, legacy
backends.

Learn more at progress.com/kinvey

http://progress.com/kinvey

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

17Progress / Mobility

•	 Queuing: Similar to caching, many SDKs and systems help manage network
access and device performance by queuing and batching data, especially when
performing writes.

In all three of the above cases, you’ll want pay close attention to how the systems,
SDKs and tools you’re using to help facilitate storage, caching and queuing handle sync
schedules and conflict resolution. You’ll want a solution that provides some common-
sense defaults, while enabling your teams to control schedules and how conflict
resolution decisions are made, at runtime. As these features are often complex to
manage, we recommend using a 3rd party solution, as opposed to attempting to build all
of these capabilities into your mobile apps and API, in house.

Security
Now that we’ve talked about key considerations for designing your API, let’s look at
factors for making sure that APIs and apps stay secure, and your core data protected. In
the context of security, there are three major areas you’ll want to pay careful attention to:

•	 App and API Authentication and Authorization

•	 Data Encryption and Local Storage

•	 Compliance

App and API Authentication and Authorization

When mobilizing and modernizing your monolith, your primary concern should be
ensuring secure access on three fronts: your apps, your cloud-based API and, finally,
to your internal data sources. Each of these points of authentication and authorization
should work in-concert, be planned in advance, and be consistent across all apps and
your entire API surface.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

18Progress / Mobility

Fig 5. Securing mobile apps and RESTful API endpoints is an essential step during a cloud migration.
Integrating with existing identity providers ensures consistent permissions across all apps, legacy and
cloud, while allowing users to reuse existing credentials.

And while it’s possible to implement your own security framework in all three of these
areas, this is a complex task that is often better left to a trusted platform provider. Kinvey,
for instance, provides a complete Identity Connect solution with client libraries for in-app
authorization and authentication, an identity server for your cloud APIs, and no-code
integration into your existing enterprise authentication sources, like ADFS, LDAP and
SAML.

Data Encryption

Even if you’ve secured access to your apps and data sources, its essential to use
encryption as an added layer of protection. In the context of mobile modernization, you
should encrypt data:

•	 On the pipe, in transit, using secure communication protocols like SSL

•	 At rest, especially when data is to be cached or stored locally apart from its
source. This could be either data stored on a mobile device, or in a cloud cache.

As with authentication, handling encryption of your data, especially on device, is

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

19Progress / Mobility

complex. Consider client libraries that assist in this encryption, and
which can communicate securely with your token servers. Kinvey,
for example, provides client libraries for all mobile app types that
facilitate encryption and decryption of your sensitive data.

Compliance

Finally, if your organization operates in an industry where
compliance is always a built-in consideration, you’re likely already
thinking about this topic, when it comes to data and making your
core business cloud-accessible and mobile. And while secure
authentication and encryption are always top considerations on
a compliance checklist, there’s much more to consider, especially
with compliance requirements like PCI, PII and HIPAA. If you’re
evaluating cloud platforms to accelerate your mobilization efforts,
pay careful attention to what compliance certifications and
guarantees each candidate provides. Progress Kinvey, for instance,
considers compliance an essential core feature of its platform, and
provides a set of purpose-built HIPAA-compliant services into its
core products.

Choosing the Right Cloud
When considering a cloud provider, it’s important to consider not only your needs and
context, but also the strengths and specializations of the provider. While there are
several cloud vendors on the market of various sizes, not every cloud is the same. Some
are a loose collection of services that you assemble (like AWS, Azure or Google Cloud
Platform), while others are pre-integrated or specialize around a set of use cases, like
hosting or mBaaS providers.

Within specialized providers, you’ll also find that some are stronger with greenfield
(typically B2C) scenarios, while others are optimized for working with existing clouds and
monoliths. For example, while both Kinvey, from Progress, and Firebase, from Google, are
focused on adding value on top of “raw” clouds to accelerate mobile app development,
Firebase tends to be better suited for consumer apps, while Kinvey provides building
blocks and functionality tuned for enterprise modernization efforts.

The table below summarizes some key factors to consider when choosing a cloud based
on the needs of your app and the strengths of the provider.

Mission-Critical & Compliant
Not all apps are created equal. Some are
just for fun and disposable. Some are
mission-critical, working with sensitive
customer data.

Kinvey, from Progress, is the
backend for your mission-critical
apps.

Kinvey is HIPAA compliant and
powers the Progress HealthCloud, a
tailored cloud platform for healthcare
organizations, pre-integrated with EHRs
and other healthcare data sources.

Connections to existing data and
authentication systems happen over
secure pipes, and the Kinvey SDKs make
it easy to encrypt and decrypt data.

When it’s time to ship, Kinvey provides
BAAs, SLAs, operational intelligence
dashboards and industry leading
support.

Learn more at progress.com/kinvey

http://progress.com/kinvey

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

20Progress / Mobility

Cloud Pros Cons

“Raw” Cloud

(AWS, Azure, Google
Cloud)

•	 Maximum access to cloud
capabilities

•	 Complete control over cloud
resources

•	 Nothing is pre-integrated;
some assembly required

•	 Added maintenance
overhead

•	 Steep learning curve
•	 Unpredictable pricing

Consumer BaaS

(Firebase)

•	 Easy to get started
•	 Abstracts “raw” cloud

complexities
•	 Great for “greenfield” apps

with no need to access
existing data/auth providers

•	 Useful consumer-oriented
capabilities (ads, public app
stores)

•	 No support for reusing
existing data/auth
providers

•	 No cloud portability
•	 Limited compliance and

SLA options

Enterprise BaaS

(Kinvey)

•	 Easy to get started
•	 Abstracts “raw” cloud

complexities
•	 Robust support for

connecting to existing data
and auth providers

•	 Additional SLA and
compliance options

•	 Cloud portability

•	 Less flexible than “raw”
cloud services

•	 More expensive than
Consumer BaaS options

Table 6. Weighing the pros and cons of three different options

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

21Progress / Mobility

Future-Proofing Your
Modernization Efforts
After you’ve taken the time to fully-consider your application architecture, you’ll be well
on your way to a successful modernization effort. However, if you want to ensure that
your organization is prepared not only for the needs of today, but can anticipate and
better respond to an evolving landscape in the future, you’ll want to spend some time
future-proofing your current effort.

Future-proofing, in this context, does not mean that you can successfully predict every
single change in technology and your industry. It does, however, mean that you should
anticipate that change will occur, and that you future-proof through:

•	 Making performance a feature

•	 Baking operational intelligence into your apps and API

•	 Design APIs and Services that can be leveraged beyond mobile

In the final section of this playbook, we’ll look at each of these, in turn.

Performance Considerations
The phrase “performance is a feature” is meant to convey that your apps should be
designed and built not just to work, but work well. They should be tuned to be as
fast and lightweight as possible, to use only the data needed and to provide the best
performance experience for end users. And while performance is a complex, multi-
faceted topic, there are a number of high-value areas that you can focus on to ensure
built-in performance for your effort:

Factor What it is Why it matters

Payload trimming When building RESTful
services, favor services that
return or require only the base
minimum of data needed.

Smaller payloads result in faster
network operations

Data & Asset Compression Ensure that all data, images
and other assets are
compressed (for example, with
gzip) on the server

Smaller assets and data payloads
result in faster network operations,
especially on lower bandwidth
mobile connections

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

22Progress / Mobility

Factor What it is Why it matters

Network latency monitoring
& management

Be aware of and instrument
how your legacy systems,
cloud services and mobile
apps perform in the wild.
Favor offline and caching
approaches for mobile
apps where latency is a real
consideration

High latency conditions can often
render apps non-functional, and
your employees or customers,
frustrated

Push & user notifications Use mobile push notifications,
SMS and email to provide
critical updates or trigger an
interaction

An effective notification pattern
keeps users out of your apps
unless they have a reason to be
there, resulting in better-utilization
of network requests

Monitoring & Management Considerations
The second way to future-proof your modernization effort is to bake operational
intelligence into your apps and API, so that you can monitor actual usage, identify
trouble-spots or issues, and spot trends and opportunities that you might otherwise
miss. Monitoring falls into a few categories:

Factor What it is Why it matters

Analytics, monitoring and
measurement

Instrumenting the various
features of your apps and API

Provides insight on actual app and
feature usage

Logging and auditing Crash monitoring and logging;
Exception tracking; Network
monitoring and logging

Can help catch bugs before they
become widespread; Provides
insight on device usage, network
conditions in the wild

End-User Feedback Whether in-app or otherwise,
providing customers and
end-users an opportunity to
self-report issues with an app
or experience

Sometimes, your own tools will
miss bugs, or missing features
your users identify as bugs.
Feedback adds a human factor to
app monitoring.

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

23Progress / Mobility

Design with the Future in Mind
Finally, when it comes to future-proofing your mobility efforts, you
should be aware of how the definition of mobile is changing, and
how other emerging trends may affect your business in the future.
In every case on this list, or even your own internal list, the key is to
build flexibility into your API from day one, by creating an API that
is:

•	 Modular: Decomposed into essential units of work, using a
microservice or serverless approach

•	 Composable: Easy to create new services from existing
services with little friction

That applies to anything in this list below, or anywhere your
organization might innovate in the future.

Trend What it is How do I design for it?

Chatbots Voice and Messaging as the
UI of the future; Replaces
traditional form-based
patterns and interactions with
conversational flows

Model services around objectives,
not interactions. For example,
consider authentication: Are your
existing auth services compatible
with voice or chat patterns?

Progressive Web Apps
(PWAs)

“Installable” web apps that
leverage the web, but behave
like mobile apps

Embrace web technologies and
cross-platform solutions, even for
your native mobile apps

Augmented and Virtual
Reality

Interaction patterns that
overlay computing on the
physical world (AR), or which
introduce wholly-virtual
environments (VR)

Look for user interactions and
processes that would benefit from
contextual overlays. Prepare for
heavier use of computer vision as
input to your apps.

Future Proof with Progress
App development is always evolving,
and the challenges extend far beyond
mobile. In addition to NativeScript and
Kinvey, Progress offers a complete app
development platform that covers:

•	 Web Apps: Rapidly build modern
web apps, including PWAs, using
the industry leading Kendo UI
widgets

•	 Desktop Apps: Make any app
look better and do more with the
legendary Telerik UI tools

•	 Chatbots: NativeChat, from
Progress, is the easiest way to train
a bot and add it to your web or
mobile app.

•	 IIoT: Progress DataRPM provides
an innovative solution for detecting
and predicting industrial equipment
failures.

•	 AR/VR: Progress Labs is hard at
work creating tools to make AR/VR
easy to add to any app.

Learn more at progress.com

http://progress.com

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

24Progress / Mobility

Trend What it is How do I design for it?

IoT / Industrial IoT Embedded device connectivity,
from the field to the smart
home, to the shop floor and
beyond; An explosion of
network connected and aware
devices accessing, creating
and acting upon your core
data

Don’t assume that the mobile
device is the most network- and
process-constrained device you’ll
ever need to support; Decompose
APIs as much as possible to
support IoT use-cases

Next Steps
No matter where technology goes, or how your organization evolves, creating flexible,
modular and composable services increases the likelihood that you’ll be able to respond
quickly to change.

The world of technology continues to advance and increase in complexity, presenting
you with both opportunities and challenges. As an architect, you are uniquely suited to
navigate your enterprise through these challenges and opportunities both by leveraging
your existing skills and patterns, and educating yourself on the unique challenges
presented by mobility and the cloud.

Hopefully, this playbook has provided an overview of those challenges, and equipped
you to continue the modernization conversation within your enterprise. If you’re
undertaking a modernization effort, Progress can help. Click here to contact us and
request additional guidance from one of our mobility experts.

Also available when you contact us:

•	 Migration architecture diagrams in easy to copy PowerPoint format. Add them
to you next internal presentation.

•	 Migration “checklist” to help guide your mobile modernization effort

https://www.progress.com/company/contact

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

25Progress / Mobility

Progress Reference
Architecture
While the guidance in this whitepaper is universal, Progress provides a complete app
development platform that makes migrating to the cloud and mobile easy. This reference
architecture shows how solutions from Progress can be used together on your journey to
modernization.

Going cloud-native with Progress

Going “cloud-native” with Progress Kinvey, Hybrid Data Pipeline, NativeScript and Kendo
UI fully embraces the ideals of piecemeal migrations that minimize risk and maximize
opportunity that the cloud has to offer. With this approach:

•	 NativeScript provides a “write once, run anywhere” application layer for creating
native mobile apps for iOS and Android, while sharing code with web apps and
PWAs created with Kendo UI.

•	 Kinvey provides a fully-integrated, serverless backend that runs on any cloud
and offers out-of-the-box integrations with existing auth providers and systems
of record

•	 Hybrid Data Pipeline helps streamline secure connections between existing data
and the cloud

©
 2

01
8

Pr
og

re
ss

. A
ll

R
ig

ht
s

R
es

er
ve

d.

Progress, NativeScript and Kinvey are trademarks or registered trademarks of Progress Software Corporation and/or one of its
subsidiaries or a iliates in the U.S. and/or other countries. Any other trademarks contained herein are the property of their respective
owners.

© 2018 Progress Software Corporation and/or its subsidiaries or a iliates. All rights reserved.
Rev 2018/02 | 180207-0000

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax: +1 781 280-4095
On the Web at: www.progress.com
Find us on facebook.com/progresssw twitter.com/progresssw youtube.com/progresssw
For regional international office locations and contact information,
please go to www.progress.com/worldwide

About Progress
Progress (NASDAQ: PRGS) offers the leading platform for developing and deploying
mission-critical business applications. Progress empowers enterprises and ISVs to build
and deliver cognitive-first applications, that harness big data to derive business insights
and competitive advantage. Progress offers leading technologies for easily building
powerful user interfaces across any type of device, a reliable, scalable and secure
backend platform to deploy modern applications, leading data connectivity to all sources,
and award-winning predictive analytics that brings the power of machine learning to any
organization. Over 1700 independent software vendors, 80,000 enterprise customers,
and 2 million developers rely on Progress to power their applications.

Learn about Progress at www.progress.com or +1-800-477-6473

To learn more about mobility solutions available from Progress, including technologies
mentioned in this whitepaper, such as NativeScript and Kinvey, please visit our website:
www.progress.com/mobility
If you have questions and would like to talk to a Progress mobility expert,
please Contact Us

http://www.progress.com
http://www.progress.com/worldwide
http://www.progress.com
http://www.progress.com/mobility
http://www.progress.com/contact

	Introduction
	The Challenges of Migrating to a Modern Mobile Architecture
	1. Assess your structure
	2. Assess your skills
	Strategies for Migrating to Mobile
	Mobile Application Approaches
	Mobile Application Architecture
	The Bottom Line
	Strategies for Migrating to the Cloud
	Data Architecture
	Addressing Your “Monolith”
	API Design
	Service Modularization & Granularity
	Data & Mobile Applications
	Security
	App and API Authentication and Authorization
	Data Encryption
	Compliance
	Choosing the Right Cloud
	Future-Proofing Your Modernization Efforts
	Performance Considerations
	Monitoring & Management Considerations
	Design with the Future in Mind
	Next Steps
	Progress Reference Architecture

